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SUMMARY 

A method for measuring obstructive factors y and the external porosity E in solid 
beds by using the reversed-flow gas chromatographic technique is described. The 
method does not have any of the disadvantages connected with the carrier gas flow and 
the instrumental spreading of the chromatographic bands, because the phenomena 
being studied are taking place inside a diffusion column through which no carrier gas 
flows. Measurements of elution velocities, height equivalent to a theoretical plate and 
theoretical diffusion coefficients are not needed, the calculations being based simply 
on the slopes of three linear plots obtained experimentally. The necessary mathemat- 
ical equations are derived in detail and applied to determine the y and E values with six 
packing materials, using four different glass cells. 

INTRODUCTION 

A flow perturbation technique, reversed-flow gas chromatography (RF-GC), 
was introduced in 198Oi and used to study the kinetics of various surface-catalysed 
reactions2-i2 and for other physico-chemical measurements. The latter include gas 
diffusion coefficients’3-15, relative molar responses, collision diameters and critical 
volumes of gases16, Lennard-Jones parameters’ 7, adsorption equilibrium con- 
stants’*, the kinetics of drying of catalysts”, rate coefficients for evaporation of pure 
liquids2’, activity coefficients in liquid mixtures 21, kinetic studies of reactivity of 
marble with sulphur dioxide22, interaction between the components of salt-modified 
adsorbents23 and mass transfer and partition coefficients across phase bound- 
aries2”27. Two general reviews on the method have have published28729, a review on 
the analytical applications of the method?’ and recently a book31. 

The new technique is based on reversing the direction of flow of the carrier gas 
from time to time. It uses a conventional gas chromatograph with any kind of detector, 
accommodating in its oven a so-called sampling cell. This consists of a sampling 
column and a diffusion column and is connected to the carrier gas inlet and the 
detector via a four- or six-port valve, as shown schematically in Fig. 1. By switching the 
valve from one position to the other, the carrier gas is made to flow through the 
sampling column either from D2 to Dl or in the reverse direction. It also fills the 
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Fig. 1. Gas connections and columns in the RF-GC technique (from ref. 30). 

diffusion column L1 and the vessel Lz. More details of the experimental set-up used 
with the RF-GC technique can be found elsewhere29*31. 

The flow reversal for a time period t’ shorter than the gas hold-up time of a solute 
in the sections land Z’ of the sampling column records the concentration of the solute in 
the junction x = I’, if this solute comes out of column L1 as the result of its diffusion 
into the carrier gas. This concentration recording has the form of extra chromato- 
graphic peaks (sample peaks) superimposed on the otherwise continuous detector 
signal. An example is given in Fig. 2. The area under the curve or the height h from the 
continuous concentration-time curve of these sample peaks, measured as a function of 
time to (when the flow reversal was made) is the basic mathematical tool giving the 
physico-chemical quantities mentioned above. 

In most instances this is done in a simple, although accurate way, using cheap 
conventional GC instrumentation, without the need to perform any of the usual gas 
chromatographic operations and measurements. An example is provided by the 
accurate measurement of gaseous diffusion coefftcients’3-‘5, without concern for the 
main difficulties associated with the traditional GC methods, e.g., the disadvantages 
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Fig. 2. A reversed-flpw chromatogram with two sample peaks recording the concentration of propene in 

nitrogen at x = 1’ (V = 0.36 cm s 3 -‘, T = 324.7 K, p = I atm) (from ref. 26). 

inherent in operation at low flow-rates and the difficulty of correctly allowing for the 
instrumental spreading of the chromatographic band outside the column. The same 
and other problems are met in the determination of the obstructive factor y, as it is the 
product yD which is usually determined from HETP measurements in packed 
columns, employing a range of carrier gas velocities around the optimum value. Then, 
y is usually found by assuming a theoretical value for the diffusion coefficient D. An 
additional disadvantage of this method is that the experimental data are fitted to an 
height equivalent to a theoretical plate (HETP) equation, assumed to be correct. 

The arrested elution method of Knox and McLaren32 bypasses some of the 
experimental and theoretical difficulties of the standard continuous elution method, 
but it still relies heavily on the time of passage along the column and the accurate 
measurement of the outlet elution velocity. 

The RF-GC technique does not have any of the disadvantages connected with 
the carrier gas flow and the instrumental spreading of the chromatographic bands, 
because the phenomena being studied are taking place inside the diffusion column L1 
and the vessel L2, and no carrier gas flows through those vessels. The gas flows only 
through the column Z’ + I, and is merely used as a means for repeated sampling of the 
concentrations at the point x = /‘, i.e., at the exit of the column Li. This is done with 
the help of the narrow and symmetrical sample peaks, mentioned above (cJ, Fig. 2), 
without measuring their elution velocity and without even knowing the carrier gas 
flow-rate. The experimental data recorded are the height h of the sample peaks in 
arbitrary units (say cm), and the time to elapsing between the solute injection and the 
respective flow reversal, the duration of the latter being always the same (say 30 s). If 
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Fig. 3. Diffusion bands obtained at 313.2 K with a thermal conductivity detector, using helium as carrier gas 
and nitrogen as solute. (4, Vessel L2 empty; 0, vessel L2 tilled with glass beads of diameter 3 mm. 

one plots In h against to, a so-called diffusion band is obtained, like those shown in Fig. 
3. 

An obvious difference between the old elution GC and RF-GC is that in the 
former longitudinal gaseous diffusion currents are parallel to the chromatographic 
current and the diffusion coefficients D or yD are extracted from this mixed current by 
mathematical analysis. In the second method, the diffusion current is from the outset 
physically separated from the chromatographic current, and this is done by placing the 
diffusion process perpendicular to the chromatographic process. A diffusion band, 
rather than an elution band, is now mathematically analysed to yield diffusion 
coefficients, or other physico-chemical parameters from its distortion, in the same way 
that a distorted elution chromatographic band permits similar calculations. It must be 
pointed out that instrumental or other spreading of the sample peaks does not 
influence the results, as it is the same in all peaks of the same run. If the duration of the 
flow reversals is changed, the above spreading changes, but the physico-chemical 
quantity extracted from the diffusion band comes out the same, provided that the same 
duration is maintained in all flow reversals in the same experiment. 

A general chromatographic sampling equation, describing the concentration 
time curve of the sample peaks created by the flow reversals, has been derived14g28,31 
using mass balances, rates of change, etc., and integrating the resulting partial 
differential equations under given initial and boundary conditions. It was proved28,31, 
however, that the height h of each sample peak above the ending baseline is 
proportional to the concentration of the solute at the junction x = Z’ of the sampling 
cell and at time r. of the flow reversal. This peak height for a linear detector, like the 
flame ionization detector, is given by the relation 

h z 2c(l’, to) (1) 
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MATHEMATICAL ANALYSIS 

The function for the diffusion band 
The mathematical function describing the diffusion band has been derived for 

some specific cases, namely, (a) when no vessel L2 exist?l and the diffusion column is 
empty and closed at z = L1 (cf., Fig. 1); (b) when Lz is absent and column L1 is tilled 
with a reactive solid22; ( c w ) h en vessel L2 contains an agitated liquid26; (d) when vessel 
L2 is filled with a reactive solid27,30. In all these derivations, various degrees of 
approximations were adopted in solving the differential equations, according to the 
precision required and the complexity of the problem. In the present case the function 
for the diffusion band is sought independently of the gas injected into the cell, with 
a better precision than before, and for the following arrangements: (1) when both 
column L1 and vessel L2 are empty of any solid or liquid material; (2) when both 
column L1 and vessel L2 are packed with a solid material that does not interact in any 
way with the injected solute; and (3) when L1 is empty and only L2 is packed with the 
above solid. Case 3 gives a general solution with 1 and 2 as special cases. Therefore, it is 
treated first. 

Following the same mathematical practice as before22*26*27*29*31, the diffusion 
equation (Fick’s second law) is written for the regions z and y (cJ, Fig. 1): 

ac,lato = Dld2C,~az2 (2) 

ac,jat, = D2a%gay2 (3) 

where c, = cz(z, to) and cY = c,(‘y, to) are the gaseous concentrations of the injected 
solute in the region z (diffusion column) and y (vessel L2), respectively, D1 and D2 
being the gaseous diffusion coefficients of the solute in the carrier gas in regions z and 
y, respectively. 

The initial conditions are 

c,(z, 0) = ?(z - L,) 

c,c_v, 0) = 0 (5) 

where m is the amount of solute injected at z = L1, aG the cross-sectional area in 
column z (and also in column I’ + Z) and 6(z - L,) the Dirac delta function. 

There are boundary conditions at three regions: at z = 0, at z = L1 or y = 0, 
andaty = L2: 

cz(O, to) = c(l’, to) (6) 

Dl(acZ/az),=, = VC(~, to) (7) 

CAL13 to) = cy(O, to> (8) 

dh(~4~4=L, = abD2(ac,/ay), = o (9) 

(adaYh., = 0 (10) 
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where c(l’, to) is the solute concentration at x = Z’ given in eqn. 1, v is the linear velocity 
of the carrier gas and a& the cross-sectional area of vessel LZ. 

The system of partial differential equations 2 and 3 can be solved by using 
Laplace transformation with respect to lo (transform parameter po), under the initial 
conditions 4 and 5, and subject to the boundary conditions 6-10. The first results are 
two ordinary linear second-order differential equations in CZ(z, po) and C&V, po), the 
capital letters C, C, denoting the t o Laplace transformed functions c, and cY, 
respectively: 

d2C 
2 - q:c, = - 
dz2 

L6(z - L1) 
a& 

d2C,, 

dy2 
- q:c, = 0 

(11) 

where 

4: = PO/& and qt = PO/& (13) 

Both eqns. 11 and 12 can be integrated either classically or by using z and y Laplace 
transformation, respectively, with the following results: 

c:(O) 
C, = C,(O)cosh qlz + ~ smh qlz - 

m 

41 
~ sinh ql(z - L,) . u(z - L,) (14) 
a&tq, 

c;(O) 
C, = C,(O)cosh q2y + - 

q2 

sinh q2y (15) 

where C,(O) and C,,(O) are the to transforms of cZ and cY at z = 0 and y = 0, 
respectively, C:(O) = (dC,/dz),=o, C,,(O) = (dC,/dy),=, and u(z - L,) is the 
Heaviside unit step function, with values 0 for z < L1 and 1 for z > L1. 

The values or the relations of C,(O), C,(O), C,(O) and CY(0), which would be 
constants of integration had eqns. 11 and 12 been solved classically, can be found with 
the help of the boundary conditions 6-10, all transformed with respect to to, thereby 
changing cZr cY and c to C,, C, and C, respectively. Therefore, C,(O) is replaced by C(I’, 
po) according to eqn. 6, and C:(O) is substituted by vC(/‘, po)/D1 from eqn. 7, giving 

V 

C, = C(I’,p,)(cosh q,z + ~ 
m 

Dlq, 

sinh qlz)- ___ 
acDlql 

sinh ql(z - Ll).u(z - L,) (16) 

whereas, by using eqn. 10, eqn. 15 

C;(O) = -C,(0)q2tanh q2L2 

Finally, eqns. 16 and 17 are linked 
with the result 

is simplified to 

(17) 

together using the boundary conditions 8 and 9, 
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w, PO) = efsinh 4iL1 + v cash q1Li + $$$ tanh q212(cGsh qlLl + 
G 1 Dlql G 1 

+ -!- sinh qlLl)]-’ 
Dlq, 

(18) 

This relationship is similar to eqn. 21 in ref. 27, but some of the approximations 
used to effect its inverse Laplace transformation with respect to p0 are now different, 
leading to a more precise result. First, it is assumed as before that v/Dlq, $ 1 for high 
enough flow velocities and sinh qlL1 is omitted compared with (v/Dlql)cosh qlL1, and 
also cash qlL1 compared with (v/Dlql)sinh qlL1. After this approximation, and some 
rearrangement, eqn. 18 becomes 

W’, PO) = T -’ 
Dlqlsinh qlL 

coth qlL1 

Dlq, + 

a&D$qf tanh q2Lz -. 
QiDtqf Dzqz 

(19) 

. 
where V = aGv is the volume flow-rate of the carrier gas. 

The following approximations are new and adopted for the first time. These refer 
to the hyperbolic functions sinh qlL1, coth qlL1 and tanh q2L2. The first is simply set 
equal to the argument qlLl, but the latter two functions are subject to the following 
procedure. First, the inverse Laplace transforms of coth qlL1/Dlql and tanh 
q2 L2 Jb2q2 are taken33 in the form of an elliptic function e3 or &, respectively, and 
then the series representing each 0 function is transformed back, term by term, to 
obtain 

2 2 

PO + 48 + PO + 9/? + ... (20) 

tanh q2L2 2 

Dzq2 = L, 

1 1 

PO + 9a 
+ 

p. + 25a 
+ 

“’ 
(21) 

where 

b = n2DJL: (22) 

a = TC2&/4L; (23) 

The approximation starts from this point by omitting the time parameter p. from 
a particular term onwards as compared with the diffusion parameters n@ or na. In 
series 20, p. is omitted compared with 4/3,9/I, . . ., etc., while in series 2 1, p. is omitted in 
comparison with 9a, 25a, . . ., etc.: 

)I 
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2 ‘~+?.?_2 
P- B 6 a 

2 1.29 

PO + B \+ --F- 

tanh q2L2 

Dzqz =:[p&+:(;++5+“‘)] 

+if 
1 1 -- 

a n=O (28 + 1)2 CI 1 
2 

+l.T_l 

a 8 a 

(24) 

(25) 

The sums f ne2 and 5 (2n + 1)-2 are evaluated as equal to rr2/6 and 7c2/8, 
II=1 n=O 

respectively, by means of the Riemann zeta function. 
Approximating in eqn. 19 the function sinh qlL1 by qlL1, (coth qlLI)/Dlql by 

the far right-hand side of eqn. 24 and (tanh q2L2)/D2q2 by the far right-hand side of 
eqn. 25, one obtains, after rearrangement, an equation containing only numerical 
constants and three dimensionless parameters A, A and R: 

C(I’,po) = ?A,? + l)(n + 1) [A(1.29 + 1.87R)13 + 
L 

+ (1.29 + 4.29A + lt2R + 1.87AR)A2 + (4.29 + A + n2R)1 + 11-l (26) 

where 

1 = PO/B (27) 

A = !! _ 4Lz .3 
a Lf D2 

R=-=V;; abL2 

aGLt VG 

(28) 

(29) 

VG = aGLI and V& = a&L2 being the gaseous volumes of column Li and vessel L2, 
respectively. If the roots of the denominator in eqn. 26 are -rlr -r2 and - r3, this 
equation is simply written as 



OBSTRUCTIVE FACTORS AND EXTERNAL POROSITY IN SOLID BEDS 131 

C(l’, po) = . m (AA + l)(A + 1) 
VA(l.29 + 1.87R) ’ (2 + ~1) (A + rz)(n + r3) (30) 

and its inverse Laplace transformation with respect top0 is easily taken after breaking 
it into three partial fractions. The result is the desired function c(l’, to) given as sum of 
three exponential functions of time: 

WY CO) = NI 
[ 

CArI- I)@1 - 1) W2-l)(r2-1) 
(rl_r2)(rl_r3) exp(-rlbt0)+(r2_r1)(r2_r3) exp(-r2Pc0)+ 

+ m- l)h- l) 
(r3 - rd(r3 - r2) 

exp(-r3pf0) 
1 

(31) 

where 

N1 = . mB 
I’A(l.29 + 1.87R) 

If the right-hand side of eqn. 3 1 is substituted for c(1’, to) in eqn. 1, the height h of 
the sample peaks as a function of time is obtained, i.e., the function describing the 
diffusion band (~5, Fig. 3) when the column L1 is empty and the vessel L2 is packed 
with a solid not interacting with the injected solute. The ratio D1/D2 in this case is equal 
to D&D1 = l/y, where y is the obstructive factor in the packed vessel L2 as defined by 
Giddings34, and also stressed by Knox and McLaren32 as arising from two effects, 
namely, the tortuosity of the paths through the medium 
constriction and widening of the paths. Hence the parameter A 

eqn. 28, by 

(33) A = 4L;/Lfy 

and the alternating 
is given, according to 

Eqn. 3 1 also describes the diffusion band when column L1 and vessel L2 are both 
empty of any solid material or both packed with non-sorbing material. In these two 
cases, however, D1/D2 = 1 and 

A = 4L;JL: (34) 

Moreover, the parameter R will have the same value irrespective whether L1 and L2 are 
both empty or packed with solid. Therefore, the vaIues of A and R in these cases are 
characteristic of the cell dimensions, and with their help the roots - rl, - r2 and - r3 of 
the denominator in eqn. 26 can be found with any desired precision. These roots differ 
considerably from one another, making the exponential coefficients -rl/T, -r2jl and 
- r3fi of the three functions in eqn. 3 1 very different, and therefore easily determinable 
from the experimental diffusion band. For example, the absolutely smallest root, say 
-r3, describes the diffusion band at long enough times, i.e., after its maximum (cf:, 
Fig. 3) when the other two exponential functions have already decayed to negligibly 
low values. It corresponds to the last linear part of the band, as the latter is 
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a semilogarithmic plot. The slope of this part gives -r3/I and , using eqn. 22, the 
diffusion coefficient D1 of the solute in the carrier gas is easily calculated. 

Two limiting cases of eqn. 3 1 are worth mentioning. The first arises when L2 = 
0 and V& = 0, i.e., when vessel Lz is absent. Then, A = 0 and R = 0, the denominator 
of eqn. 26 reduces to 1.29A2 + 4.29A + 1, with roots -rl = - 3.073 and -r2 = 
-0.2522, and eqn. 30 becomes 

C(Z’, po) = 2- . A+1 
I’. 1.29 (A + 3.073)(1 + 0.2522) 

giving on inversion the first limiting case of eqn. 31: 

c(Z’, to) = *[0.2055 exp( -0.2522bQ + 0.5697 exp( - 3.073/?t0)] 
i/ 

(35) 

Therefore, the slope of the last linear part is -0.25228 = -0.2522z2D1/L? = 
- 7c2D1/3.97L4, which coincides with that predicted by eqn. 4-39 in ref. 3 1. The second 
limiting cwz ol‘cqn. 3 I is obtained when L? 4 L, and thus .4 can be set equal to pro. 
In that case only the volume ratio R = Vb/ VG determines the roots of the denominator 
of eqn. 26, which reduces to 

C(Z’, po) = 2 . 
A+1 

V (1.29 + s-c2R)A2 + (4.29 + 7c2R)A + 1 
(36) 

If these roots are -rl and -r2, the inverse transform gives, instead of eqn. 31, the 
expression 

c(Z’, to) = N; 
[ 

S---- 
-1 

exp( - r#O) + 
r2 - 1 

___ . ev(-r2P0) 

rt - r2 r2 - rl 1 
where 

N; = . mP 
I’(l.29 + TC’R) 

(37) 

(38) 

Determination of the obstructive factor, y 
Two experimental plots at the same temperature, using the same cell, are 

required for this determination: (1) a diffusion band (cf., Fig. 3) with both the diffusion 
column L1 and the vessel L2 empty of any solid material; and (2) a diffusion band with 
both L1 and L2 packed with the solid material under study, provided that a gaseous 
solute, that is not sorbed by the solid or does not interact with it in any way, is used in 
the diffusion experiment. If the slopes of the last linear parts after the maximum of the 
above bands are b(empty) and h(packed), their ratio gives directly the value of the 
obstructive factor, without any other measurement or correction: 

b(packed) -r&packed) n2yDi/L: 
@empty) = -r&empty) = 7c2D1/Lf = ’ 

(39) 
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This relationship is based on the fact that the parameters A and R have the same value, 
given by eqns. 34 and 29, respectively, in both experiments (1) and (2) described above. 
Therefore, all roots - rl, - r2 and - r3 of eqn. 3 1 are the same whether the cell is empty 
or packed. The root -r3 is taken as having the smallest value, thus describing the last 
linear part of the diffusion band. The value of the diffusion parameter b is given by eqn. 
22, with the diffusion coefficient being D1 when the cell is empty and yD1 when it is 
packed with solid. 

It must be noted that the simpler functions described by eqns. 37 and 35 lead to 
exactly the same eqn. 39 with - rz or - 0.2522, respectively, substituted for - rg. This 
means that the experiments could be conducted with column L1 alone, without the 
presence of vessel Lz, although in this instance only the obstructive factor, and not the 
porosity of the solid bed, could be determined, as is shown below. 

Determination of the external porosity, E 
One more diffusion band, in addition to those described under (1) and (2) above, 

is required for this determination: (3) a band obtained with the diffusion column L1 
empty and vessel L2 packed with the solid under study. This is case 3 mentioned at the 
beginning of the Mathematical Analysis section, as leading to the most general 
solution, i.e., eqn. 31 with A given by eqn. 33. Experimentally, the slope of the last 
linear part of the band, b(semi-packed), is again required, together with the lengths L1 
and Lz, and the gaseous volumes Vc and Vo of the empty cell. From these lengths and 
volumes, the values of A(empty) and R(empty) for the empty cell are calculated using 
eqn. 34 and 29, respectively. The roots of the denominator (in brackets) of eqn. 26 are 
then found by using the above values of A(empty) and R(empty), as all the others are 
known numerical constants. The absolutely smallest root, -r3, multiplied by P = 
TC’DJL:, gives the slope of the last linear part of the band obtained in experiment 1: 

b(empty) = - r3n2D1/L: 

From this relation, D1 is accurately calculated, although its value is not required for 
the present purposes. 

The root -r3s for case 3, i.e., for the semi-packed cell cannot be found in the 
same way as described above, as now the value of A is calculated using eqn. 33, but the 
value of R(semi-packed) is not known because Qpacked) for the packed vessel L2 is 
unknown and equal to E Vo(empty), where E is the external porosity of the packed solid 
bed, i.e., its void fraction. Conversely, R(semi-packed) is found using the root -r3S, 
and from that the porosity E. This is accomplished by calculating the unknown root 
from the experimental slopes and the known -r3: 

b(semi-packed) - r3d - r3s =--=-- 

Wwty) -r3P -r3 
(41) 

where fi cancels out, because it has the same value for the empty and the semi-packed 
cell, pertaining only to L1 but not to L2 (cj, eqn. 22). The value of -r3S found by 
means of eqn. 41 is now substituted for ,I in the denominator of eqn. 26, together with 
A(semi-packed) found by eqn. 33, thus yielding an equation in R(semi-packed), from 
which its value is calculated: 
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R(semi-packed) = 
1.29A& - (1.29 + 4.29A)r& + (4.29 + A)rJs - 1 

- 1.87&, + (n’ + 1.87&z, - 7c2rss 
(42) 

Finally, the porosity E is calculated from the ratio 

E = R(semi-packed) V&(packed) 

R(empty) = V&(empty) 
(43) 

Instead of using the denominator of eqn. 26 for the above calculations, the less 
precise but simpler eqn. 36 can be employed. Using the known value of R(empty), the 
two roots of the denominator can be found, and the absolutely smaller of them, - r2, 
can be used in eqn. 40 to find D1 (if required) or in eqn. 41 in place of - r3 to find - rJs. 
This is substituted back for A in the denominator of eqn. 36 to find 

R(semi-packed) = 
1.29& - 4.29r3, + 1 

n2(r3s - 4J 
(44) 

a relation which could also be obtained directly from eqn. 42 by setting A = 0. 
To summarize the steps taken for calculating the porosity, the experimental 

quantities required are the slopes &empty) and &semi-packed), the lengths L1 and L2, 
the volumes Vo(empty) and Vo and the value of y from the previous determination. 
Using the values of A(empty) = 4L$/LT and R(empty) = V&(empty)/Vo in the 
denominator of eqn. 26 or 36, its roots are found, the absolutely smallest one, -r3 or 
- r2, respectively, being retained, Then, using eqn. 41, -r3s is calculated. This is used, 
together with the new value of A(semi-packed) = 4L$/L:y, in eqn. 42 or 44 to find 
R(semi-packed), and finally the latter and R(empty) are put in eqn. 43 to give E. 

In a previous paper2g a much simpler relation (eqn. 4) was written for calculating 
E, but that was only a first approximation, and a limiting case easily obtained from the 
more sophisticated equations derived here. 

EXPERIMENTAL 

Two chromatographs were used, equipped with devices for either flame 
ionization detection (FID) or thermal conductivity detection (TCD). In the first 
instance the lengths I’ and 1 of the sampling cell (cf., Fig. 1) were each 103 cm and L1 
was 55 cm. In the second instance (with TCD), I’ and 1 were each 72 cm and L1 was 
43.8-55.5 cm. The material of the above columns was either stainless steel or glass of 
I.D. 3.9-7.6 mm. The I.D. of vessel L2 was 17.5 mm in all instances. The gas volumes 
Vo of columns L, ranged from 6.02 to 21.47 cm3, whereas V;; of empty vessels L2 was 
7.90-14.95 cm3. 

The carrier gas was nitrogen (FID) or helium (TCD) at flow-rates ranging from 
0.333 to 0.500 cm3ss1. The duration of the carrier gas flow reversal was 15 s. 

The pressure drop along 1’ + 1 was negligible, and the pressure inside the whole 
cell was 1 atm. 

Six solid beds were used, two with glass beads of diameter 3 and 4 mm, one with 
pieces of marble of mesh size 120-150. one with y-alumina of lo-22 mesh, a bed with 
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Chromosorb P of 60-80 mesh, and a bed with silica gel of 60-80 mesh. The solute gases 
were methane (FID) or nitrogen (TCD). 

Before experiments were carried out with packed or semi-packed cells, the solid 
materials were conditioned in situ by heating them at 503 K for 20 h under a continuous 
flow of carrier gas. After conditioning, the oven gas was brought to the desired 
working temperature and kept there for 1 h. Then, 20 cm3 of solute gas were injected, 
and after 24 h the actual experiments were performed by injecting 2 cm3 of solute 
(methane or nitrogen), and repeatedly making 15-s flow reversals. The temperature of 
the thermal conductivity detector was always 373 K. Each experiment lasted about 2 h. 

Plots and calculations were made with an RT-Unitron desk-top computer 
connected to a Star SGlO printer. 

RESULTS AND DISCUSSION 

Both the obstructive factors y and the external porosities E in the various solid 
beds were determined using four glass cells with different geometric characteristics, 
and therefore different A(empty) and R(empty) values. Table I gives all particulars of 
these cells, together with their A(empty) calculated according to eqn. 34, R(empty) 
found from eqn. 29 and the absolutely smallest root -r3 of the denominator of eqn. 
26. 

In Table II obstructive factors and porosities measured with TCD are collected, 
and Table III gives the results of porosity measurements based on experiments with 
FID. 

The calculations of y values were made using eqn. 39, whereas for E the procedure 
summarized in the paragraph following eqn. 44 was followed. The more precise eqns. 
26 and 42 were employed in all E calculations. 

The obstructive factor for glass beads of diameter 3 mm was not very different 
when measured with a single tube L1 of diameter 7.6 mm (cell No. 1) and with cell No. 
2 having two vessels L1 and Lz of very different diameters (3.9 and 17.5 mm, 
respectively). The y value found by Knox and McLaren 32 for glass beads of diameters 
0.28 and 0.50 mm was 0.58-0.62, under very different experimental conditions and by 
a different method. With materials other than glass beads (alumina, Chromosorb 
P and silica gel) the y values differed considerably from those of glass beads using 
identical experimental conditions. This is probably due to the irregularities in the 
shape of the particles. 

As regards the porosity of the glass beads, when it was determined with nitrogen 

TABLE I 

CHARACTERISTICS OF THE FOUR CELLS USED TO DETERMINE THE OBSTRUCTIVE 
FACTOR AND THE POROSITY 

Cell No. L, (cm) Lz (cm) VG (cm3) Vh (cm3) lO’A(empty) R(empty) - ~3 

1” 43.8 _ 21.47 _ 0 0 -0.2522 
2 50.4 4.2 6.02 7.90 2.78 1.312 -6.102. IO-’ 

3 55.0 6.0 9.59 14.95 4.76 1.559 -5.313.10-* 
4 55.5 4.2 6.63 8.90 2.29 1.342 -5.996. IO-’ 

* The I.D. of column L, in this cell was 7.6 mm, whereas in cells 2, 3 and 4 it was 3.9 mm. 
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TABLE 11 

OBSTRUCTIVE FACTORS y AND EXTERNAL POROSITY E OF SOLID BEDS, MEASURED 
WITH A THERMAL CONDUCTIVITY DETECTOR, HELIUM CARRIER GAS AND NITROGEN 
SOLUTE GAS 

Cell No. Packing material Particle size T(K) Y E 

1 Glass beads Diameter 3 mm 323.2 0.151 - 

2 Glass beads Diameter 3 mm 323.2 0.862 0.498 
4 Glass beads Diameter 3 mm 313.2 - 0.495 
2 y-Alumina 10-22 mesh 323.2 0.331 0.997 
2 Chromosorb P 60-80 mesh 323.2 0.643 0.858 

2 Silica gel 6@80 mesh 323.2 0.195 0.863 

as solute gas (Table II), it was found 0.498 and 0.495 at two temperatures. These values 
differ by only 4% from the calculated value of 0.478, cited for beds of spherical 
particles. The porosity with glass beds of smaller diameter (0.28 and 0.50 mm), found 
by Knox and McLaren32 by the use of a different chromatographic method, was 0.38. 
However, with methane as solute gas (Table III), the glass beads of 4 mm diameter 
show a porosity that decreases with increasing temperature, which may be due to 
reversible adsorption of methane on the glass surface, the adsorption decreasing as the 
temperature rises. This is confirmed by the results obtained with y-alumina (cJ, Table 
III), where E is greater than unity and decreases again with temperature rise. The 
apparent porosity in this instance is ~(1 + k), k being the partition ratio of methane 
between the carrier gas and the solid surface. Dividing the apparent porosity in Table 
III by the calculated value of 0.478 for spherical particles, the value of 1 + k is 
obtained, and from this the k values in the last column in Table III are found. As 
expected, these values decrease with increasing temperature. This is not the first time 
that adsorption of methane on alumina has been detected. Non-zero partition ratios 
for methane have been determined previously . l8 These, together with the present 
results, stress the need to use a gaseous solute that is not sorbed by the solid material or 
does not interact with it in anyway. The porosity value of 0.997 for alumina, found 

TABLE III 

EXTERNAL POROSITY E OF SOLID BEDS AND PARTITION RATIO k OF METHANE 
MEASURED WITH CELL NO. 3, USING A FLAME IONIZATION DETECTOR, NITROGEN 
CARRIER GAS AND METHANE SOLUTE GAS, AT VARIOUS TEMPERATURES 

Packing material Particle size T (K/ E k 

Glass beads Diameter 4 mm 353.2 0.525 - 
Glass beads Diameter 4 mm 383.2 0.466 - 
Glass beads Diameter 4 mm 413.2 0.386 - 
Marble pieces 120-150 mesh 322.2423.2 0.455 - 
y-Alumina 10-22 mesh 353.2 1.321 1.764 
y-Alumina IO-22 mesh 383.2 1.156 1.418 
y-Alumina IO-22 mesh 413.2 0.875 0.831 
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with nitrogen as solute gas (Table II), is probably due to the contribution of the 
internal porosity of this material, which is highly porous. 

The values of E found for pieces of marble, Chromosorb P and silica gel appear to 
be normal. 
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